试题
试卷
试题
首页
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
当前位置:
初中数学
/
综合题
1.
(2021八下·开福月考)
定义:对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“湘一数”.将一个“湘一数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为f(a).例如:a=23,对调个位数字与十位数字得到新两位数32,新两位数与原两位数的和为23+32=55,和与11的商为55÷11=5,所以 f(23)=5.
根据以上定义,回答下列问题:
(1) 填空:
①下列两位数:50,42,33中,“湘一数”为
;
②计算:f(45)=
.
(2) 如果一个“湘一数”b的十位数字是k,个位数字是2(k+1),且f(b)=11,请求出“湘一数”b.
(3) 如果一个“湘一数”c,满足c﹣5f(c)>30,求满足条件的c的值.
微信扫码预览、分享更方便