当前位置: 初中数学 / 综合题
  • 1. (2021·崂山模拟) 问题提出:在平面上,给出n个圆把平面至多分割成多少个区域?

    问题探究:

    为探究规律,我们采用一般问题特殊化的策略,先从简单的情形入手,再逐次递进,最后得出一般性的结论.下面我们先从直线分割平面入手来探究这个问题.

    1. (1) 探究一:1条直线可以将平面分成2个区域;2条直线时,要使分成的区域尽量多,则第2条直线要与第1条直线相交可以将平面分成4部分;3条直线时,如图1,要使分成的区域尽量多,就必须将第3条直线与前面2条直线尽可能两两相交,避免多条直线相交于一点和平行关系的出现,这样就会得到2个交点,这2个交点将第3条直线分为了2条射线和1条线段,而每条射线和线段将已有的区域一分为二,这样就多了 个区域,所以3条直线至多将平面分成 个区域;4条直线时,如图2,要使分成的区域尽量多,就必须将第4条直线与前面3条相交直线尽可能两两相交,避免多条直线相交于一点和平行关系的出现,这样就会得到3个交点,这3个交点将第4条直线分为了2条射线和 条线段,而每条射线和线段将已有的区域一分为二,这样就多了 个区域,所以4条直线至多将平面分成 个区域;5条直线时,如图3,要使分成的区域尽量多,就必须将第5条直线与前面4条相交直线尽可能两两相交,避免多条直线相交于一点和平行关系的出现,这样就会得到4个交点,这4个交点将第5条直线分为了2条射线和 条线段,而每条射线和线段将已有的区域一分为二,这样就多了 个区域,所以5条直线至多将平面分成 个区域;由此可推断6条直线可以将平面至多分成个区域;依此类推n 条直线可以将平面至多分成个区域.
    2. (2) 探究二:1个圆可以将平面分成2个区域;2个圆时,要使分成的区域尽量多,2个圆相交将平面分成4个区域;3个圆时,要使分成的区域尽量多,第3个圆与前2个圆都相交被分成了 条弧,将平面至多分成了 个区域;4个圆时,要使分成的区域尽量多,第4个圆与前3个圆都相交被分成了 条弧,将平面至多分成了 个区域;以此类推5个圆可以将平面分成个区域.

      问题解决:n个圆至多可以将平面分成个区域.

      问题拓展:仿照前面的过程,n个三角形至多可以将平面分成个区域.

微信扫码预览、分享更方便