当前位置: 初中数学 / 阅读理解
  • 1. (2021九上·台州开学考) 阅读材料:各类方程的解法

    求解一元一次方程,根据等式的基本性质,把方程转化为 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.

    例如,一元三次方程 ,可以通过因式分解把它转化为 ,解方程 ,可得方程 的解.

    1. (1) 问题:方程 的解是
    2. (2) 拓展:用“转化”思想求方程 的解;
    3. (3) 应用:如图,已知矩形草坪ABCD的长 ,宽 ,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点 求AP的长.

微信扫码预览、分享更方便