当前位置: 初中数学 / 综合题
  • 1. (2020八上·龙潭期末)                     

    1. (1) 探究:

      如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.请直接写出线段BD,DE,CE之间的数量关系是

    2. (2) 拓展:

      如图(2),将探究中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问探究中的结论是否成立?如成立,请你给出证明;若不成立,请说明理由.

    3. (3) 应用:

      如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,请直接写出△DEF的形状是

微信扫码预览、分享更方便