当前位置: 初中数学 / 证明题
  • 1. (2021八上·顺义期末) “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB =∠AOB.

    我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.

    已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.

    求证:∠APB =∠AOB.

微信扫码预览、分享更方便