试题
试卷
试题
首页
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
当前位置:
高中数学
/
解答题
1.
(2022·泰安模拟)
某工厂“对一批零件进行质量检测.具体检测方案为:从这批零件中任取10件逐一进行检测,当检测到有2件不合格零件时,停止检测,此批零件检测未通过,否则检测通过.假设每件零件为不合格零件的概率为0.1,且每件零件是否为不合格零件之间相互独立.
(1) 若此批零件检测未通过,求恰好检测5次的概率;
(2) 已知每件零件的生产成本为80元,合格零件的售价为150元/件,现对不合格零件进行修复,修复后合格的零件正常销售,修复后不合格的零件以10元/件按废品处理,若每件零件的修复费用为20元,每件不合格零件修复后为合格零件的概率为0.8,记X为生产一件零件获得的利润,求X的分布列和数学期望.
微信扫码预览、分享更方便
使用过本题的试卷
高中数学人教A版(2019)选择性必修三 第七章 随机变量及其分布 7.4 二项分布
山东省泰安市2022届高三数学一轮检测(一模)试卷