已知:四边形ABCD为矩形.
求作:正方形ABEF(E在BC上,点F在AD上).
作法:①以A为圆心,AB为半径作弧, 交 AD于点F;
②以B为圆心,AB为半径作弧, 交 BC于点E;
③连接EF.
所以四边形ABEF为所求的正方形.
证明:∵AF=AB,BE=AB
∴ ▲ = ▲
在矩形ABCD中,AD∥BC,
即AF∥BE
∴四边形ABEF为平行四边形
∵∠A=90°
∴为矩形( )
∵AF=AB,
∴四边形ABEF为正方形 ( )
抱歉,您未登录!暂时无法查看答案与解析!
登录查看答案解析