当前位置: 初中数学 / 综合题
  • 1. (2022八下·历下期末) 如图1,两个等腰直角三角形△ABC、△EDC的顶点C重合,其中∠ABC=∠EDC=90°,连接AE,取AE中点F,连接BF,DF.小红想分析当△EDC绕着点C旋转时,图形的基本元素之间有什么不变的关系.

    1. (1) 如图1,当B、C、D三个点共线时,请猜测线段BF、FD的数量关系,并直接写出;
    2. (2) 将△EDC绕着点C顺时针旋转一定角度至图2位置,小红根据“AE中点F”这个条件,想到取AC与EC的中点M、N,分别与点F相连,再连接BM,DN,最终利用△BMF≌△FND(SAS)证明了(1)中的结论仍然成立.请你思考当△EDC绕着点C继续顺时针旋转至图3位置时,(1)中的结论是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;
    3. (3) 连接BD,在△EDC绕点C旋转一周的过程中,△BFD的面积也随之变化.若AB=3,DE=2,请直接写出△BFD面积的最大值.

微信扫码预览、分享更方便