当前位置: 高中数学 / 解答题
  • 1. (2022高三上·常州期中) 甲、乙两地教育部门到某师范大学实施“优才招聘计划”,即通过对毕业生进行笔试,面试,模拟课堂考核这3项程序后直接签约一批优秀毕业生,已知3项程序分别由3个考核组独立依次考核,当3项程序均通过后即可签约.去年,该校数学系130名毕业生参加甲地教育部门“优才招聘计划”的具体情况如下表(不存在通过3项程序考核放弃签约的情况). 

    性别            人数

    参加考核但未能签约的人数

    参加考核并能签约的人数

    男生

    45

    15

    女生

    60

    10

    今年,该校数学系毕业生小明准备参加两地的“优才招聘计划”,假定他参加各程序的结果相互不影响,且他的辅导员作出较客观的估计:小明通过甲地的每项程序的概率均为 , 通过乙地的各项程序的概率依次为 , m,其中0<m<1.

    参考公式与临界值表: , n=a+b+c+d.

    0.10

    0.05

    0.025

    0.010

    k

    2.706

    3.841

    5.024

    6.635

    1. (1) 判断是否有90%的把握认为这130名毕业生去年参加甲地教育部门“优才招聘计划”能否签约与性别有关;
    2. (2) 若小明能与甲、乙两地签约分别记为事件A,B,他通过甲、乙两地的程序的项数分别记为X,Y.当E(X)>E(Y)时,证明:P(A)>P(B).

微信扫码预览、分享更方便