当前位置: 初中数学 / 综合题
  • 1. (2023·锦州模拟) 如图1,已知抛物线y=-x2-4x+5交x轴于点A、B两点(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,连接AD.

    1. (1) 求直线AD的解析式.
    2. (2) 点E(m,0)、F(m+1,0)为x轴上两点,其中(-5<m<-3.5)EE′、FF′分别平行于y轴,交抛物线于点E′和F′,交AD于点M、N,当ME′+NF′的值最大时,在y轴上找一点R,使得|RE′-RF′|值最大,请求出点R的坐标及|RE′-RF′|的最大值.
    3. (3) 如图2,在抛物线上是否存在点P,使得△PAC是以AC为底边的等腰三角形,若存在,请出点P的坐标及△PAC的面积,若不存在,请说明理由.

微信扫码预览、分享更方便