当前位置: 高中数学 / 多选题
  • 1. (2023·义乌模拟) 古希腊数学家欧几里得在《几何原本》卷11中这样定义棱柱:一个棱柱是一个立体图形,它是由一些平面构成的,其中有两个面是相对的、相等的,相似且平行的,其它各面都是平行四边形.显然这个定义是有缺陷的,由于《几何原本》作为“数学圣经”的巨大影响,该定义在后世可谓谬种流传,直到1916年,美国数学家斯顿(J.C.Stone)和米利斯(J.F.Millis)首次给出欧氏定义的反例.如图1,八面体的每一个面都是边长为2的正三角形,且4个顶点A,B,C,D在同一平面内,取各棱的中点,切割成欧氏反例(如图2),则该欧氏反例(    )

    A . 共有12个顶点 B . 共有24条棱 C . 表面积为 D . 体积为

微信扫码预览、分享更方便