-
1.
(2023八下·泗阳期中)
苏科版八下数学教材中,对正方形的性质和判定进行了探究,同时课本94页第19题对正方形中特殊线段的位置和数量关系也进行了探究,在此,我们也来作进一步的探究,如图1,探究所提供的正方形
的边长都为2.
![](//tikupic.21cnjy.com/2023/06/15/99/61/99615222c7ff4720bd74b121daccfadb_394x395.png)
-
(1)
【探究】
如图2,在正方形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
中,如果点E、F分别在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
、
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
上,且
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmo%3E%E2%8A%A5%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 垂足为M,那么
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
相等吗?证明你的结论.
-
-
(2)
【应用】
如图3,在正方形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
中,动点E、F分别在边
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
、
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
上,将正方形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
沿直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
折叠,使点B对应的点M始终落在边
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
上(点M不与点A、D重合),点C落在点N处,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EM%3C%2Fmi%3E%3Cmi%3EN%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
交于点P,设
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Et%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 求线段
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmi%3EN%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的长(用含t的式子表示).
-
-
(3)
【拓展】
如图4,在正方形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
中,E是
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的中点,F、G分别是
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
、
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
上的动点,且
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmi%3EG%3C%2Fmi%3E%3Cmo%3E%E2%8A%A5%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EG%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的最小值.
-
微信扫码预览、分享更方便