1.
(2024·长春)
【问题呈现】小明在数学兴趣小组活动时遇到一个几何问题:如图①,在等边△ABC中,AB=3,点M、N分别在边AC、BC上,且AM=CN , 试探究线段MN长度的最小值.
【问题分析】小明通过构造平行四边形,将双动点问题转化为单动点问题,再通过定角发现这个动点的运动路径,进而解决上述几何问题.
【问题解决】如图②,过点C、M分别作MN、BC的平行线,并交于点P , 作射线AP .
在【问题呈现】的条件下,完成下列问题:
-
-
-
(2)
∠CAP的大小为 度,线段MN长度的最小值为 .
-
-
(3)
【方法应用】某种简易房屋在整体运输前需用钢丝绳进行加固处理,如图③.小明收集了该房屋的相关数据,并画出了示意图,如图④,△ABC是等腰三角形,四边形BCDE是矩形,AB=AC=CD=2米,∠ACB=30°.MN是一条两端点位置和长度均可调节的钢丝绳,点M在AC上,点N在DE上.在调整钢丝绳端点位置时,其长度也随之改变,但需始终保持AM=DN . 钢丝绳MN长度的最小值为米.
-