当前位置: 初中数学 / 综合题
  • 1. (2017·广陵模拟) 【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D选在何处时,所用时间最短?

    【特例分析】若n=2,则时间t= + ,当a为定值时,问题转化为:在BC上确定一点D,使得AD+ 的值最小.如图②,过点C做射线CM,使得∠BCM=30°.

    1. (1) 过点D作DE⊥CM,垂足为E,试说明:DE=
    2. (2) 【问题解决】请在图②中画出所用时间最短的登陆点D′,并说明理由.
    3. (3) 【模型运用】请你仿照“特例分析”中的相关步骤,解决图①中的问题(写出具体方案,如相关图形呈现、图形中角所满足的条件、作图的方法等).
    4. (4) 如图③,海面上一标志A到海岸BC的距离AB=300m,BC=300m.救生员在C点处发现标志A处有人求救,

      立刻前去营救,若救生员在岸上跑的速度都是6m/s,在海中游泳的速度都是2m/s,求救生员从C点出发到

      达A处的最短时间.

微信扫码预览、分享更方便