试题
试卷
试题
首页
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
当前位置:
高中数学
/
解答题
1.
(2024高三上·广东月考)
古希腊数学家托勒密对凸四边形
凸四边形是指没有角度大于
的四边形
进行研究,终于有重大发现:任意一凸四边形,两组对边的乘积之和不小于两条对角线的乘积,当且仅当四点共圆时等号成立.且若给定凸四边形的四条边长,四点共圆时四边形的面积最大.根据上述材料,解决以下问题:
如图,在凸四边形
中,
(1) 若
,
, (图1),求线段
长度的最大值;
(2) 若
,
,
, (图2),求四边形
面积取得最大值时角A的余弦值,并求出四边形
面积的最大值.
微信扫码预览、分享更方便