思路1:先设 的值为1,根据已知条件,计算出 , , .
猜想: .
然后用数学归纳法证明.证明过程如下:
①当 时,,猜想成立
②假设 ( N*)时,猜想成立,即 .
那么,当 时,由已知 ,得 .
又 ,两式相减并化简,得 (用含 的代数式表示).
所以,当 时,猜想也成立.
根据①和②,可知猜想对任何 N*都成立.
思路2:先设 的值为1,根据已知条件,计算出 .
由已知 ,写出 与 的关系式: ,
两式相减,得 与 的递推关系式: .
整理: .
发现:数列 是首项为,公比为的等比数列.
得出:数列 的通项公式 ,进而得到 .