当前位置: 初中数学 / 解答题
  • 1. (2018·青岛模拟) 问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

    问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.

    探究一:

    ①用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

    此时,显然能搭成一种等腰三角形。所以,当n=3时,m=1

    ②用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

    只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形

    所以,当n=4时,m=0

    ③用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

    若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形

    若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形

    所以,当n=5时,m=1

    ④用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

    若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形

    若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形

    所以,当n=6时,m=1

    综上所述,可得表①

    n

    3

    4

    5

    6

    m

    1

    0

    1

    1

    探究二:

    1. (1) 用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

      (仿照上述探究方法,写出解答过程,并把结果填在表②中)

    2. (2) 分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)

      n

      7

      8

      9

      10

      m





      你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……

      解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

      (设n分别等于4k-1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)

      n

      4k-1

      4k

      4k+1

      4k+2

      m





    3. (3) 问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了多少根木棒。(只填结果)

微信扫码预览、分享更方便