当前位置: 初中数学 /人教版(2024) /九年级上册 /第二十二章 二次函数 /本章复习与测试
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2018-2019学年数学人教版九年级上册 第22章 二次函...

更新时间:2021-05-20 浏览次数:931 类型:单元试卷
一、选择题
二、解答题
  • 16. (2024九上·上思月考) 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.
  • 17. 某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.
    1. (1) 当每件商品的售价是多少元时,每个月的利润刚好是2250元?
    2. (2) 当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
  • 18.   2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮.某“火龙果”经营户有A.B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.
    1. (1) 设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;
    2. (2) B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.

      ①求每天B种“火龙果”的销售利润y(元)与销售单价x(元)之间的函数关系?

      ②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?

  • 19. 某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
    1. (1) 写出y与x中间的函数关系式和自变量x的取值范围;
    2. (2) 超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
  • 20. 如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.

    1. (1) 若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
    2. (2) 求矩形菜园ABCD面积的最大值.
  • 21. “五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数关系:y=﹣4x+220(10≤x≤50,且x是整数),设影城每天的利润为w(元)(利润=票房收入﹣运营成本).
    1. (1) 试求w与x之间的函数关系式;
    2. (2) 影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?
  • 22. 工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)

    1. (1) 在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
    2. (2) 若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
  • 23. 某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).

    设这种双肩包每天的销售利润为w元.

    1. (1) 求w与x之间的函数解析式;
    2. (2) 这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
    3. (3) 如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?

微信扫码预览、分享更方便

试卷信息