一物体从静止开始做直线运动,其加速度随时间变化如图所示,则( )
如图所示,理想自耦变压器,副线圈接有滑动变阻器R和定值电阻R1 , Q是滑动变阻器R的滑动触头,原线圈两端接电压有效值恒定的交变电流,所有电表均为理想电表,则( )
如图所示,物体在拉力F的作用下沿水平面做匀速运动,发现当外力F与水平方向夹角为30°时,所需外力最小,由以上条件可知,外力F的最小值与重力的比值为( )
一带负电的粒子只在电场力作用下沿x轴正向运动,其电势能Ep随位移x变化的关系如图所示,则下列说法正确的是( )
如图所示,细线的一端固定于0点另﹣端系一质量为m的小球,在水平恒力F作用下,小球由0点正下方的A点,从静止开始与竖直方向的运动,刚好能到达B点.小球到达B点时,细绳与竖直方向的夹角为60°.从A到B的运动过程中,则( )
如图所示,固定倾斜放置的平行导轨足够长且电阻不计,倾角为θ,导轨间距为L,两阻值均为R的导体棒ab、cd置于导轨上,棒的质量均为m,棒与导轨垂直且始终保持良好接触,整个装置处在与导轨平面垂直向上的磁感应强度为B的匀强磁场中,开始时导体棒ab、cd均处于静止状态,现给cd一平行于导轨平面向上的恒力F,使cd向上做加速运动.到t0时刻时,cd棒的位移为x,速度达到v0 , ab刚好要向上滑动.棒与导轨的动摩擦因数均为μ,且最大静摩擦力等于滑动摩擦力,则在0~t0的过程中( )
在“探究功与速度变化的关系”实验中,采用如图甲所示装置,水平正方形桌面距离地面高度为h,将橡皮筋的两端固定在桌子边缘上的两点,将小球置于橡皮筋的中点,向左移动距离s,使橡皮筋产生形变,由静止释放后,小球飞离桌面,测得其平抛的水平射程为L.改变橡皮筋的条数,重复实验.
研究小组想要测量电压表内阻和某电源电动势,给定器材如下:
待测电压表:量程0﹣1V,内阻约为990Ω;
待测电源:电动势约为6V,内阻约为1Ω;
电流表:量程0﹣0.6A,内阻可忽略;
滑动变阻器R:阻值变化范围0﹣20Ω;
定值电阻R1:阻值为6kΩ;
定值电阻R2:阻值为2kΩ;
单刀单掷开关和导线若干.
①连接电路;
②闭合S1、S2 , 读出此时电压表的示数为0.90V;
③保持S1闭合,断开S2 , 读出此时电压表的示数为0.70V;
④断开S1 , 整理器材.
忽略电源内阻,由以上数据,可以测得电压表的内阻为Ω;电源的电动势为 V.考虑到电源有内阻,电源电动势的测量值和真实值相比较(填“偏大”“相等”或“偏小”).
如图所示,倾角θ=30°足够长的斜面顶端固定一光滑定滑轮,轻绳跨过定滑轮,两端分别连接钩码和带凹槽的木块,木块的凹槽内放置一个钩码,两钩码的质量均为m=0.1kg,木块沿斜面向下匀速运动,速度大小为v0=10m/s,已知木块与斜面间动摩擦因数μ= ,重力加速度g=10m/s2 . 求:
如图所示,在xOy平面内,x=2L处竖直放置一个长为L的粒子吸收板AB,其下端点A在x轴上,粒子打到吸收板上立即被板吸收,不考虑吸收板带电对粒子运动的影响.在AB左侧存在竖直向上的匀强电场,场强大小为E,在AB右侧存在垂直存在垂直纸面向外的匀强磁场.原点O处有一粒子源,可沿x轴正向射出质量为m、电量为+q的不同速率的带电粒子,不计粒子的重力.
如图,一上端开口、下端封闭的细长玻璃管竖直放置.玻璃管的下部封有长l1=25.0cm的空气柱,中间有一段长l2=25.0cm的水银柱,上部空气柱的长度l3=40.0cm.已知大气压强为p0=75.0cmHg.现将一活塞(图中未画出)从玻璃管开口处缓慢往下推,使管下部空气柱长度变为l1′=20.0cm.假设活塞下推过程中没有漏气,求活塞下推的距离.
如图所示为一列简谐横波在t=0时刻的波形图,此时x=18m处的质点刚开始振动,t=1.5s时,x=30m处的质点第一次到达波峰,则下列说法正确的是( )
如图所示,一束宽度为d的平行光射向截面为正三角形的玻璃三棱镜,入射光与AB界面夹角为45°,玻璃的折射率n= ,光束通过三棱镜后到达与BC界面平行的光屏PQ,求光屏PQ上光斑的宽度D.
如图所示是氢原子的能级图,大量处于n=4激发态的氢原子向低能级跃迁时,一共可以辐射出6种不同频率的光子,其中巴耳末系是指氢原子由高能级向n=2能级跃迁时释放的光子,则( )
如图所示,质量均为M=4kg的小车A、B,B车上用轻绳挂有质量为m=2kg的小球C,与B车静止在水平地面上.A车以v0=2m/s的速度在光滑水平面上向B车运动,相碰后粘在一起(碰撞时间很短).求: