当前位置: 初中数学 /浙教版(2024) /九年级上册 /第3章 圆的基本性质 /3.4 圆心角
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2018-2019学年数学浙教版九年级上册3.4 圆心角(2...

更新时间:2018-10-22 浏览次数:451 类型:同步测试
一、选择题
  • 1. 如果两条弦相等,那么( )
    A . 这两条弦所对的圆心角相等 B . 这两条弦所对的弧相等 C . 这两条弦所对的弦心距相等 D . 以上说法都不对
  • 2. 已知⊙O的半径是10cm, 是120°,那么弦AB的弦心距是(    )

    A . 5cm B . cm C . cm D . cm
  • 3. (2020九上·常州月考) 如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则弦BC的长等于(   )

    A . 8 B . 10 C . 11 D . 12
  • 4. 如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①弧AB=弧CD;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是(   )

    A . 1 B . 2 C . 3 D . 4
  • 5. 下列说法中正确的是(  )

    ①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦相等;③两条弦相等,圆心到这两弦的距离相等;④在等圆中,圆心角不变,所对的弦也不变.

    A . ①③ B . ②④ C . ①④ D . ②③
  • 6.

    如图,MN是⊙O的直径,MN=8,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为(   )

    A . B . 2 C . 3 D . 4
  • 7. 如图,已知 的半径为5,AB⊥CD,垂足为P,且AB=CD=8,则OP的长为(   )


    A . 3 B . 4 C . D .
二、填空题
三、解答题
  • 11. 如图,已知AB、CD是⊙O的两条弦,OE⊥AB于E,OF⊥CD于F,OE=OF,求证:AB=CD.

  • 12. 如图,在⊙O中,C、D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M、N在⊙O上,求证:  .

  • 13. 如图,在⊙ 中, ,OC分别交AC,BD于E、F,求证:

  • 14. 如图,四边形ABCD内接于⊙O,AC和BD是对角线,AB=CD.

    求证:

    1. (1) AC=DB;
    2. (2) AD∥BC
  • 15. 如图, 的半径为5,弦 于E,

    1. (1) 求证:
    2. (2) 若 于F, 于G,试说明四边形OFEG是正方形.
  • 16. 我们学习了“圆心角、弧、弦的关系”,实际上我们还可以得到“圆心角、弧、弦、弦心距之间的关系”如下:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距(弦心距指从圆心到弦的距离,如图1中的OC、OC′,弦心距也可以说成圆心到弦的垂线段的长度)中有一组量相等,那么它们对应的其余各组量也相等.请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题:

    如图2,O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交于点A、B、C、D.

    1. (1) 求证:AB=CD;
    2. (2) 若角的顶点P在圆上,上述结论还成立吗?若不成立,请说明理由;若成立,请加以证明.
  • 17. 如图,⊙O的两条弦AB、CD交于点E,OE平分∠BED.

    1. (1) 求证:AB=CD;
    2. (2) 若∠BED=60°,EO=2,求DE﹣AE的值.

微信扫码预览、分享更方便

试卷信息