(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为 , ,试比较 与 的大小(只需写出结论);
(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;
(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.
如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.
(Ⅰ)证明:DE⊥平面PBC;
(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(Ⅲ)已知AD=2, ,求二面角F﹣AD﹣B的余弦值.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:当x>0时, ;
(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线l:y= +m与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为N,问B,N两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.
(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;
(Ⅱ)若集合M满足:M⊆R3 , 且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;
(Ⅲ)设集合P⊆Rn , P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为 ,证明 .