当前位置: 初中数学 /苏科版(2024) /七年级下册(2024) /第12章 定义 命题 证明 /12.3 证明
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

苏科版七年级下册第12章 12.2证明 同步练习

更新时间:2017-12-23 浏览次数:147 类型:同步测试
一、单选题
  • 1. 已知4个矿泉水空瓶可以换矿泉水一瓶,现有12个矿泉水空瓶,若不交钱,最多可以喝矿泉水瓶                                        (     )

    A . 2瓶 B . 3瓶 C . 4瓶 D . 5瓶
  • 2. 下列推理正确的是   (    )

    A . 因为a//d, b//c,所以c//d B . 因为a//c, b//d,所以c//d C . 因为a//b, a//c,所以b//c D . 因为a//b, d//c,所以a//c
  • 3. 下列推理正确的是                          (    )

    A . 因为a∥d,b∥c,所以c∥d B . 因为a∥c,b∥d,所以c∥d C . 因为a∥b,a∥c,所以b∥c D . 因为a∥b,d∥c,所以a∥c
  • 4. 警方抓获一个由甲、乙、丙、丁四人组成的盗窃团伙,其中有一人是主谋,经过审讯,A、B、C三名警察各自得出结论,A:主谋只有可能是甲或乙;B:甲不可能是主谋;C:乙和丙都不可能是主谋.已知三名警察中只有一人推测正确,则主谋是(  )

    A . B . C . D .
  • 5. 甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.则第二局的输者是(  )

    A . B . C . D .
  • 6. 在可以不同年的条件下,下列结论叙述正确的是(  )

    A . 400个人中至少有两人生日相同 B . 300个人至少有两人生日相同 C . 300个人一定没有两人生日相同 D . 300个人一定有两人生日相同
  • 7.

    如图是一个风景区,A,B,C,D,E,F是这一风景区内的五个主要景点,现观光者聚于A点.假若你是导游,要带领游客欣赏这五个景点后再回到A点,但又不想多走“冤枉路”(不能走重复的路线和经过同一个景点),你认为可选择行走路线有(  )种.

    A . 4 B . 5 C . 6 D . 7
  • 8. 为了从500只外形相同的鸡蛋中找到唯一的一只双黄蛋,检查员将这些鸡蛋按1-500的顺序排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋,他将剩下的蛋的原来位置上又按1-250编号(即原来的2号变为1号,原来的4号变成2号,…,原来的500号变成250号)。又从中取出新序号为单数的蛋进行检查,任没有发现双黄蛋,……,如此下去,检查到最后的一个是双黄蛋,问这只双黄蛋最初的序号是(  )

    A . 48 B . 250 C . 256 D . 500
  • 9. 甲、乙、丙、丁四位同学在操场上踢足球,不小心打碎了玻璃窗,有人问他们时,他们这样说﹣﹣甲说:“玻璃是丙也可能是丁打的”.乙说:“肯定是丁打的”.丙说:“我没有打碎玻璃”.丁说:“我没有干这种事”.他们的老师听了后说道:“他们中有三位都不会说谎”.由此我们知道,打碎玻璃的同学是(  )

    A . B . 乙      C . D .
  • 10. A,B,C,D,E五人参加“五羊杯”初中数学竞赛得分都超过91分.其中E排第三,得96分.又知A,B,C平均95分,B,C,D平均94分.若A排第一,则D得多少分(  )

    A . 98 B . 97 C . 93 D . 92
  • 11. 李奶奶经营了一家洗衣店,一天,一位顾客拿来一张50元的人民币洗衣服,因为没零钱找,李奶奶到隔壁的书店换了零钱回来,洗一件衣服16元,李奶奶找给顾客34元,过了一会儿,书店的老板找来说刚才那张50元是假币,李奶奶只好把50元假币收回来.若李奶奶洗一件衣服能赚2元钱,在这笔生意中李奶奶赔了(  )

    A . 50元 B . 52元 C . 48元 D . 34元
  • 12. 在A,B,C三个盒子中分别装有红、黄、蓝颜色的小球中的一种,将它们分别给甲、乙、丙三个人.已知甲没有得到A盒;乙没有得到B盒,也没有得到黄球;A盒中没有装红球,B盒中装着蓝球.则丙得到的盒子编号和小球的颜色分别是(  )

    A . A,黄 B . B,蓝 C . C,红 D . C,黄
二、填空题
  • 13. (2020·绵阳模拟) 夏洛特去山里寻宝,来到藏有宝藏的地方,发现这里有编号分为一,二,三,四,五的五扇大门,每扇门上都写有一句话:一,宝藏在五号大门的后面;二,宝藏或者在三号大门的后面,或者在五号的后面;三,宝藏不在五号大门的后面;四,宝藏不在此门后面;五,宝藏在二号大门的后面,夏洛特从当地人得到,五句话中只有一句是真的,那么夏洛特应该去 号大门后面寻找宝藏.

  • 14. 在一次数学游戏中,老师在A、B、C三个盘子里分别放了一些糖果,糖果数依次为a0 , b0 , c0 , 记为G0=(a0 , b0 , c0).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.n次操作后的糖果数记为G0=(a0 , b0 , c0).

    (1)若G0=(4,7,10),则第 次操作后游戏结束

    (2)小明发现:若G0=(4,8,18),则游戏永远无法结束,那么G2015=​ 

  • 15. A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是​ 

  • 16.

    我市教研室对2008年嘉兴市中考数学试题的选择题作了错题分析统计,受污损的下表记录了n位同学的错题分布情况:已知这n人中,平均每题有11人答错,同时第6题答错的人数恰好是第5题答错人数的1.5倍,且第2题有80%的同学答对.则第5题有 人答对.

  • 17. 明的妈妈制作了30个粽子,准备给小丽若干个,小明打电话给小丽,小丽却说:“我在外地旅游,三天后再来拿,你先把粽子放在冰箱里冷冻,…要几个粽子么,可能要1个,也可能要30个,也有可能要1个到30任意个数”,小明的妈妈拿出了5个袋子,要求小明把这30个粽子放到5个袋子中,并密封好放在冰箱里冷冻,当小丽来拿时,不管小丽要1到30个中的几个粽子,不解冻不拆封,拿5袋粽子中的若干袋即可,小明该在5个袋子中各放几个呢?请你帮帮小明,在下面五个方框中填上装粽子的数目.


     

      

     

    ​ 

  • 18. 好久未见的A,B,C,D,E五位同学欢聚一堂,他们相互握手一次,中途统计各位同学握手次数为:A同学握手4次,B同学握手3次,C同学握手2次,D同学握手1次,那么此时E同学握手 次.

  • 19. 如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在200个小伙子中,如果某人不亚于其他199人,就称他为棒小伙子,那么,200个小伙子中的棒小伙子最多可能有 ​ 

  • 20. (1)A、B、C、D、E、F六个足球队进行单循环赛,当比赛进行到某一天时,统计出A、B、C、D、E五个队分别比赛了5、4、3、2、1场球,由此可知还没有与B队比赛的球队是  

    (2)有红黄蓝黑四种颜色的小球若干个,每个人可以从中任意先取两个,需要  人才能保证至少有2人选的小球颜色彼此相同.

三、解答题
  • 21. 有人认为数学没有多少使用价值,我们只要能数得清钞票,到菜场算得出价钱这点数学知识就够了.根据你学习数学的体会,谈谈你对数学这门学科的看法.

  • 22. 某足球协会举办了一次足球联赛,其积分规则为:胜﹣3,平﹣1,负﹣0,当全部比赛结束(每队平均比赛12场)时,A队共积19分,请通过计算,判断A队胜、平、负各几场.

  • 23. 有12名游客要赶往离住地40千米的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时6千米,靠走路是来不及了,唯一可以利用的交通工具只有一辆小汽车,但这辆小汽车连司机在内最多能乘5人,汽车的速度为每小时60千米.

    (1)甲游客说:我们肯定赶不上火车;(2)乙游客说:只要我们肯吃苦,一定能赶上火车;(3)丙游客说:赶上或赶不上火车,关键取决于我们自己.

    亲爱的同学,当你身处其境,一定也有自己的想法,请你就某位游客的说法,用数学知识以理其人,由于难度不同,请你慎重选择.

    选择(1)答对只能给3分,选择(2)答对可以给4分,选择(3)答对我们奖赏你满分6分.

  • 24. 请你参与亮亮在翻转扑克牌游戏时的思考.

    (1)亮亮同学把3张正面都朝上的扑克牌每次都翻转2张,改变它们的朝向.他发现无论经过多少次这样的操作都不能使3张扑克牌的正面全部朝下.他的结论对吗?

    (2)把4张正面都朝上的扑克牌每次都翻转2张,改变它们朝向,经过若干次操作,能否使4张扑克牌的正面都朝下呢?

    (3)把4张正面都朝上的扑克牌每次都翻转3张,改变它们朝向,经过若干次操作,能否使4张扑克牌的正面都朝下呢?若能,至少要经过几次这样的操作?若不能,请说明理由.

微信扫码预览、分享更方便

试卷信息