当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省嘉兴市秀洲区2018-2019学年九年级下学期初中毕业...

更新时间:2019-06-26 浏览次数:357 类型:中考模拟
一、选择题(本题有10小题,每小题3分,共30分。)
二、填空题(本题有6小题,每小题4分,共24分)
三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
  • 17. (2019·秀洲模拟)        
    1. (1) 计算:sin30°+|-3|-
    2. (2) 化简:
  • 18. (2019·秀洲模拟) 小红同学想仅用一架天平和一个10克的砝码测量出壹元硬币和伍角硬币的质量。于是,他找来足够多的壹元和伍角硬币(假设同种类每枚硬币的质量相同),经过操作得到如下记录.

    记录

    天平左边

    天平右边

    状态

    记录一

    5枚壹元硬币  1个10克的砝码

    10枚伍角硬币

    平衡

    记录二

    15枚壹元硬币

    20枚伍角硬币  1个10克的砝码

    平衡

    请你帮小红同学算一算,一枚壹元硬币和一枚伍角硬币的质量分别是多少克?

  • 19. (2019·秀洲模拟) 如图是6×6的正方形网格,点A,B,C均在格点上.请按下列要求完成作图:①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.

    1. (1) 在图中作出一个以点A,B,C,D为顶点的平行四边形.
    2. (2) 在图中作出△ABC中AB边上的中线.
  • 20. (2019·秀洲模拟) 若一个正整数能表示为两个连续自然数的平方差,则称这个正整数为“和谐数”。如:1=12-02 , 7=42-32 , 因此1和7都是“和谐数”。
    1. (1) 判断11是否为“和谐数”,并说明理由.
    2. (2) 下面是某个同学演算后发现的两个命题,请选择其中一个命题,判断真假,并说明理由.

      命题1:数2n-1(n为正整数)是“和谐数”。

      命题2:“和谐数”一定是奇数。

  • 21. (2019·秀洲模拟) 某校九年级共有360名学生.为了解该校九年级学生每周运动的时间,从中随机抽取了若干名学生进行问卷调查,并将获得的数据(每周运动的时间,单位:小时)进行整理、描述和分析.下面给出了部分信息.

    I.学生每周运动的时间的频数分布直方图如下(数据分成6组:1≤x<3,3≤x<5,5≤x<7,7≤x<9,9≤x<11,11≤x≤13)

    Ⅱ.学生每周运动的时间在7≤x<9这一组的数据是:

    7,7.2,7.4,7.5,7.5,7.6,7.8,7.8,8,8.2,8.4,8.5,8.6,8.8根据以上信息,解答下列问题:

    1. (1) 求这次被抽取的学生数。
    2. (2) 写出被抽取学生每周运动的时间的中位数.
    3. (3) 根据此次问卷调查结果,估计该校九年级全体学生每周运动的时间超过7.9小时的学生有多少人?
  • 22. (2019·秀洲模拟) 图1是某酒店的推拉门,已知门的宽度AD=2米,两扇门的大小相同(即AB=CD),且AB+CD=AD,现将右边的门CDD1C1绕门轴DD1向外面旋转67°(如图2所示).

    参考数据:(sin67°≈0.92,cos67°≈0.39,tan29.6°≈0.57,tan19.6°≈0.36,sin29.6°≈0.49)

    1. (1) 求点C到直线AD的距离.
    2. (2) 将左边的门ABB1A1绕门轴AA1向外面旋转,设旋转角为a(如图3所示),问当a为多少度时,点B,C之间的距离最短.
  • 23. (2019·秀洲模拟) 已知,抛物线y=x2+2mx(m为常数且m≠0).
    1. (1) 判断该抛物线与x轴的交点个数,并说明理由.
    2. (2) 若点A(-n+5,0),B(n-1,0)在该抛物线上,点M为抛物线的顶点,求△ABM的面积.
    3. (3) 若点(2,p),(3,g),(4,r)均在该抛物线上,且p<g<r,求m的取值范围.
  • 24. (2019·秀洲模拟) 数学拓展课上,老师给出如下定义:如果三角形有一边上的中线长恰好等于该边长的1.5倍,那么称这个三角形为“趣味三角形”.

    理解:

    1. (1) 如图1,在△ABC中,AB=AC= ,BC=2,试判断△ABC是否为“趣味三角形”,并说明理由.
    2. (2) 如图2,已知△ABC是“趣味三角形”,AD,BE,CF分别是BC,AC,AB边上的中线,且AD= BC,试探究BE和CF之间的位置关系。
    3. (3) 如图3,直线l1∥l2 , l1与l2之间的距离为2,点B,C在直线l1上,点A在直线l2上,AD,BE,CF分别是△ABC的边BC,AC,AB上的中线.若△ABC是“趣味三角形”,BC=2 .求BE2+CF2的值.

微信扫码预览、分享更方便

试卷信息