当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年吉林省长春市中考数学模拟试卷(8)

更新时间:2017-08-10 浏览次数:637 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 16. (2017·长春模拟) 将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.
    1. (1) 用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.
    2. (2) 摸出的两个球上数字之和为多少时的概率最大?
  • 17. (2017·长春模拟) 海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?
  • 18. (2017·长春模拟) 如图,已知直线a,b及∠POQ,以点O为圆心,a为半径作圆,交∠POQ两边于点M,N,再分别以点M,N为圆心,b为半径画弧,两弧交于点A,连结OA,MA,NA,则∠AMO=∠ANO,请证明.

  • 19. (2017·长春模拟)

    如图,小明想测山高度,他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.求这座山的高度(小明的身高忽略不计).

    【参考数据:tan31°≈ ,sin31°≈ ,tan39°≈ ,sin39°≈

  • 20. (2020·长春模拟) 为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.

    1. (1) 求a的值;
    2. (2) 补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;
    3. (3) 该市共有初中学生15000名,请估计其中坐校车上学的人数.
  • 21. (2017·长春模拟) 一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的函数图象如图所示.请你根据图象,回答下列问题:

    1. (1) 慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时到达B地;
    2. (2) 在下列3个问题中任选一题求解(多做不加分):

      ①快车追上慢车需几个小时?

      ②求慢车、快车的速度;

      ③求A、B两地之间的路程.

  • 22. (2017·长春模拟) 定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.

    1. (1)

      已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.

    2. (2)

      在探究“等对角四边形”性质时:张同学画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;

    3. (3) 已知:在“等对角四边形”ABCD中,∠DAB=45°,∠ABC=90°,AB=5,AD=4 .则对角线AC的长为

  • 23. (2017·长春模拟)

    如图,抛物线l1:y=x2﹣4的图象与x轴交于A,C两点,抛物线l2与l1关于x轴对称.

    1. (1) 直接写出l2所对应的函数表达式;

    2. (2) 若点B是抛物线l2上的动点(B与A,C不重合),以AC为对角线,A,B,C三点为顶点的平行四边形的第四个顶点为D,求证:D点在l2上.

    3. (3) 当点B位于l1在x轴下方的图象上,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它面积的最值;若不存在,请说明理由.

  • 24. (2017·长春模拟)

    已知:Rt△ABC中,∠ACB=90°,CA=3,CB=4,设P,Q分别为AB边,CB边上的动点,它们同时分别从A,C出发,以每秒1个单位长度的速度向终点B运动,设P,Q运动的时间为t秒.

    1. (1) 求△CPQ的面积S与运动时间t之间的函数关系式,并求出S的最大值.

    2. (2) t为何值时,△CPQ为直角三角形.

    3. (3) ①探索:△CPQ是否可能为正三角形,说明理由.

      ②P,Q两点同时出发,若点P的运动速度不变,试改变点Q的运动速度,使△CPQ为正三角形,求出点Q的运动速度和此时的t值.

微信扫码预览、分享更方便

试卷信息