当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市育英国际实验学校2020届九年级数学中考模拟试卷...

更新时间:2020-04-23 浏览次数:306 类型:中考模拟
一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)
二、填空题(本题有6小题,每小题5分,共30分)
三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
    1. (1) 计算:(π-3.14)0+(-2)-1+sin30°
    2. (2) 化简:(x+2)2-x(x-4)
  • 18. (2020·温州模拟) 如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F。

    1. (1) 求证:△ADE≌△FCE;
    2. (2) 若∠DCF=120°,DE=2,求BC的长。
  • 19. (2020·温州模拟) 随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

     

    1. (1) 这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为
    2. (2) 将条形统计图补充完整;
    3. (3) 该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
    4. (4) 某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.
  • 20. (2020·温州模拟) 图1,图2,图3是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,A,C两点都在格点上,连结AC,请完成下列作图:

    1. (1) 以AC为对角线在图1中作一个正方形,且正方形各顶点均在格点上
    2. (2) 以AC为对角线在图2中作一个矩形,使得矩形面积为6,且矩形各顶点均在格点上
    3. (3) 以AC为对角线在图3中作一个面积最小的平行四边形,且平行四边形各顶点均在格点上
  • 21. (2020·温州模拟) 如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴与A、B两点,交y轴于点C,其中点B的坐标为(3,0)。

    1. (1) 求该抛物线的解析式;
    2. (2) 设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线CB对称,求直线CD的解析式。
  • 22. (2020·温州模拟) 如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.

    1. (1) 求证:AC平分∠DAB;
    2. (2) 求证:△PCF是等腰三角形;
    3. (3) 若tan∠ABC= ,求线段PC的长.
  • 23. (2020·温州模拟) 疫情期间,某市制药厂需要紧急生产一批药品,要求必须在12天(含12天)内完成。为了加快生产,车间采取工人加班,机器不停的生产方式,这样每天药品的产量y(吨)是时间x(天)一次函数,且满足表中所对应的数量关系.由于机器负荷运转产生损耗,平均生产每吨药品的成本P(元)与时间x(天)的关系满足图中的函数图象。

    时间x(天)

    2

    4

    每天产量y(吨)

    24

    28

    1. (1) 求药品每天的产量y(吨)是时间x(天)之间的函数关系式;
    2. (2) 当5≤x≤12时,直接写出P(元)与时间x(天)的函数关系式:;
    3. (3) 若这批药品的价格为1400元/吨,每天的利润设为W元,求哪一天的利润最高,最高利润是多少?(利润=价格-成本)
    4. (4) 为了提高工人加班的津贴,药厂决定在(3)中价格的基础上每吨药品加价a元,但必须满足从第5天到第12天期间,每吨加价a后每天的利润随时间的增大而增大,直线写出a的最小值。
  • 24. (2020·温州模拟) 如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF。

    1. (1) 求直线AB的函数解析式;
    2. (2) 当点P在线段AB(不包括A,B两点)上时。

      ①求证:∠BDE=∠ADP;

      ②设DE=x,DF=y,请求出y关于x的函数解析式;

    3. (3) 点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由。

微信扫码预览、分享更方便

试卷信息