当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖州市吴兴区2018-2019学年七年级下学期数学期末考试试...

更新时间:2020-07-09 浏览次数:501 类型:期末考试
一、选择题
二、填空题
三、解答题
    1. (1) 解分式方程:
    2. (2) 解二元一次方程组
  • 19. (2023七下·东阳期末) 化简,再求值: ,再从-2,-1,0,1,2选择一个你喜欢的数代入求值.
  • 20. (2021七下·柯桥期中) 已知:如图,AB∥CD,DE∥BC.

    1. (1) 判断∠B与∠D的数量关系,并说明理由.
    2. (2) 若∠B=(105-2x)°,∠D=(5x+15)°,求∠B的度数.
  • 21. (2019七下·吴兴期末) 某校5月组织了学生参加“学习强国”知识竞赛,从中抽取了部分学生成绩(满分为100分)进行统计,绘制如下不完整的频数直方图,若将频数直方图划分的五组从左至右依次记为A、B、C、D、E,绘制如下扇形统计图,请你根据图形提供的信息,解答下列问题:

    1. (1) 频数分布直方图中,求A组的频数a,并补全频数直方图;
    2. (2) 扇形统计图中,D部分所占的圆心角n=度;
    3. (3) 若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?
  • 22. (2019七下·吴兴期末) 湖州奥体中心是一座多功能的体育场,目前体育场内有一块长80m,宽60m的长方形空地,体育局希望将其改建成花园小广场,设计方案如图,阴影区域是面积为192平方米的绿化区(四块相同的直角三角形),空白区域为活动区,且四周出口宽度一样.

    1. (1) 体育局先对四个绿化区域进行绿化,在完成工作量的 后,施工方进行了技术改进,每天的绿化面积是原计划的两倍,结果提前四天完成四个绿化区域的改造,问原计划每天绿化多少平方米?
    2. (2) 老师提出了一个问题:你能不能求出活动区的出口宽度是多少呢?

      请你根据小丽的方法求出活动区的出口宽度,并把过程写下来.

  • 23. (2019七下·吴兴期末) (阅读理解)

    我们知道,1+2+3+…+n= ,那么12+22+32+…+n2结果等于多少呢?

    在图1所示三角形数阵中,第1行圆圈中的数为1,即12 , 第2行两个圆圈中数的和为2+2,即22 , …;第n行n个圆圈中数的和为 ,即n2 , 这样,该三角形数阵中共有 个圆圈,所有圆圈中数的和为12+22+32+…+n2.

    1. (1) (规律探究)

      将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.

    2. (2) (解决问题)

      根据以上发现,计算: 的结果为.

  • 24. (2019七下·吴兴期末) 阅读下面材料:

    1. (1) 小亮遇到这样问题:如图1,已知AB∥CD,EOF是直线AB、CD间的一条折线.判断∠O、∠BEO、∠DFO三个角之间的数量关系.小亮通过思考发现:过点O作OP∥AB,通过构造内错角,可使问题得到解决.

      请回答:∠O、∠BEO、∠DFO三个角之间的数量关系是.

    2. (2) 如图2,将△ABC沿BA方向平移到△DEF(B、D、E共线),∠B=50°,AC与DF相交于点G,GP、EP分别平分∠CGF、∠DEF相交于点P,求∠P的度数;
    3. (3) 如图3,直线m∥n,点B、F在直线m上,点E、C在直线n上,连接FE并延长至点A,连接BA、BC和CA,做∠CBF和∠CEF的平分线交于点M,若∠ADC=α,则∠M=(直接用含α的式子表示).

微信扫码预览、分享更方便

试卷信息