当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省绍兴市越城区2020届九年级上学期数学期中考试试卷

更新时间:2024-07-13 浏览次数:191 类型:期中考试
一、选择题(本题有10个小题,每小题4分,共40分)
二、 填空题(本题有6个小题,每小题5分,共30分)
  • 12. (2020九上·越城期中) 从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:

    30≤t≤35

    35<t≤40

    40<t≤45

    45<t≤50

    合计

    A

    59

    151

    166

    124

    500

    B

    50

    50

    122

    278

    500

    C

    45

    265

    167

    23

    500

    早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.

  • 13. (2020九上·越城期中) 如图,A,B,C,D为⊙O上的点,OC⊥AB于点E.若∠CDB=30°,OA=2,则AB的长为.

  • 14. (2020九上·越城期中) 如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣ (x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是

  • 15. (2020九上·越城期中) 如图所示,把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4 cm,则球的半径为cm.

  • 16. (2020九上·越城期中) 如图,直线l: ,一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3)…Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1 , 0),A2(x2 , 0),A3(x3 , 0)…,An+1(xn+1 , 0)(n为正整数),设x1=d(0<d<1)若其中一条抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则我们把这条抛物线就称为:“美丽抛物线”.则当d(0<d<1)的大小变化时能产生美丽抛物线相应的d的值是.

三、 解答题(本题有8个小题,共80分)
  • 17. (2020九上·越城期中) 已知抛物线的解析式为y= -3x2+6x+9.
    1. (1) 求它的对称轴;
    2. (2) 求它与x轴,y轴的交点坐标.
  • 18. (2020九上·越城期中) 小强同学报名参加运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).
    1. (1) 小强同学从5个项目中任选一个,恰好是田赛项目的概率为
    2. (2) 小强同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
  • 19. (2020九上·越城期中) 如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.

    1. (1) 求二次函数的解析式;
    2. (2) 在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.
  • 20. (2020九上·越城期中) 如图,已知点A,B的坐标分别为(0,0),(4,0),将△ABC绕点A按逆时针方向旋转90°得到△AB′C′.

    1. (1) 画出△AB′C′.
    2. (2) 写出点C′的坐标.
    3. (3) 求旋转过程中点B所经过的路径长.
  • 21. (2021九上·温州月考) 某地欲搭建一桥,桥的底部两端间的距离AB=L,称跨度,桥面最高点到AB的距离CD=h称拱高,当L和h确定时,有两种设计方案可供选择:

    ①抛物线型;②圆弧型. 已知这座桥的跨度L=32米,拱高h=8米.

    1. (1) 如果设计成抛物线型,以AB所在直线为x轴, AB的垂直平分线为y轴建立坐标系,求桥拱的函数解析式;
    2. (2) 如果设计成圆弧型,求该圆弧所在圆的半径;
    3. (3) 在距离桥的一端4米处欲立一桥墩EF支撑,在两种方案中分别求桥墩的高度.
  • 22. (2020九上·越城期中) 某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨2元,就会少售出20件玩具.
    1. (1) 不妨设该种品牌玩具的销售单价在40元的基础上上涨x元(x>0),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:

      销售单价(元)

      x+40

      销售量y(件)

      销售玩具获得利润w(元)

    2. (2) 在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价应定为多少元?
    3. (3) 在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
  • 23. (2020九上·越城期中) 我们知道:有一内角为直角的三角形叫做直角三角形.类似地,我们定义:有一内角为45°的三角形叫做半直角三角形.如图,在平面直角坐标系中,O为原点,A(4,0),B(﹣4,0),D是y轴上的一个动点,∠ADC=90°(A、D、C按顺时针方向排列),BC与经过A、B、D三点的⊙M交于点E,DE平分∠ADC,连结AE,BD.显然△DCE、△DEF、△DAE是半直角三角形.

    1. (1) 求证:△ABC是半直角三角形;
    2. (2) 求证:∠DEC=∠DEA;
    3. (3) 若点D的坐标为(0,8),求AE的长。
  • 24. (2020九上·越城期中) 如图,已知二次函数y=x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(4,0),AC=BC.

    1. (1) 求抛物线的解析式;
    2. (2) 点E是线段AB上一动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标及S△ABF
    3. (3) 点P是抛物线对称轴上的一个动点,是否存在这样的P点,使△ABP成为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息