无
*注意事项:
已知集合A﹣{1,2,3,4,5,6,7,8,9),在集合A中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a,现将组成a的三个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=219,则I(a)=129,D(a)=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,则输出b的值为( )
某电视传媒公司为了了解某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该类体育节目时间的频率分布直方图,其中收看时间分组区间是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].则图中x的值为 .
(I)求函数f(x)的最小正周期;
(Ⅱ)当x∈[- , ]时,求函数f(x)的值域.
某高三年级从甲(文)乙(理)两个年级组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩(满分:100分)的茎叶图如图所示,其中甲组学生的平均分是85分,乙组学生成绩的中位数是83分.
(1)求x和y的值;
(2)从成绩在90分以上的学生中随机取两名学生,求甲组至少有一名学生的概率
(I)求数列{an}的通项公式;
(Ⅱ)设bn=log2an , 数列{}的前n项和为Tn , 证明:Tn<1.
如图,在平面四边形ABCD中,AB=5 , ∠CBD=75°,∠ABD=30°,∠CAB=45°,∠CAD=60°.
(I)求AC的长;
(Ⅱ)求CD的长.
如图,有一块边长为1(百米)的正方形区域ABCD.在点A处有一个可转动的探照灯,其照射角∠PAQ始终为45°(其中点P,Q分别在边BC,CD上),设BP=t.
(I)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值;
(Ⅱ)设探照灯照射在正方形ABCD内部区域的面积S(平方百米),求S的最大值.
(I)若函数φ(x)=f(x)﹣求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数f(x)的图象上一点A(x0 , f(x0)处的切线,证明:在区间(1,+∞)上存在唯一的x0 , 使得直线l与曲线y=g(x)相切.
微信扫码预览、分享更方便
详情