当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

福建省漳州市2020-2021学年高一下学期数学期末考试试卷

更新时间:2024-07-13 浏览次数:88 类型:期末考试
一、单选题
二、多选题
  • 9. (2022高一下·武汉期中) i为虚数单位,复数 ,则下列命题正确的是(    )
    A . 为纯虚数,则实数a的值为2 B . 在复平面内对应的点在第三象限,则实数a的取值范围是 C . 实数 的共轭复数)的充要条件 D . ,则实数a的值为2
  • 10. (2021高一下·漳州期末) 2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静/韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程/金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该队选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,则7个有效评分与9个原始评分相比,可能变化的数字特征是(    )
    A . 中位数 B . 平均数 C . 方差 D . 极差
  • 11. (2021高一下·漳州期末) 设向量 满足 ,且 ,则以下结论正确的是(    )
    A . B . C . D .
  • 12. (2021高一下·漳州期末) 如图,矩形 中, 为边 的中点.将 沿直线 翻折成 (点 不落在底面 内),若 在线段 上(点 不重合),则在 翻转过程中,以下命题正确的是(    )

    A . 存在某个位置,使 B . 存在点M,使得 平面 成立 C . 存在点M,使得 平面 成立 D . 四棱锥 体积最大值为
三、填空题
四、解答题
  • 17. (2021高一下·漳州期末) 已知复数 满足 ,且 的虚部为 在复平面内所对应的点在第四象限.
    1. (1) 求
    2. (2) 若 在复平面上对应的点分别为 为坐标原点,求 .
  • 18. (2021高一下·漳州期末) 从① ,② 这两个条件中选一个,补充到下面问题中,并完成解答.已知 中, 分别是内角 所对的边,且 .
    1. (1) 求角
    2. (2) 已知 ,且  ▲  , 求 的值及 的面积.(注:如果选择多个条件分别解答,按第一个解答计分)
  • 19. (2021高一下·漳州期末) 如图,在直角△ABC中,点D为斜边BC的靠近点B的三等分点,点E为AD的中点,

    1. (1) 用 表示
    2. (2) 求向量 夹角的余弦值.
  • 20. (2021高一下·漳州期末) 由袁隆平团队研发的第三代杂交水稻于2019年10月21日至22日首次公开测产,经测产专家组评定,最终亩产为1046.3公斤,第三化杂交水稻的综合优势可以推动我国的水稻生产向更加优质、高产、绿色和可持续方向发展.某企业引进一条先进的食品生产线,计划以第三代杂交水稻为原料进行深加工,创建一个新产品,已知该产品的质量以某项指标值 为衡量标准,质量指标的等级划分如表:

    质量指标值

    产品等级

    为了解该产品的生产效益,该企业先进行试生产,从中随机抽取了1000件产品,测量了每件产品的指标值,在以组距为5画频率分布直方图(设“ ”时,发现 满足:

    1. (1) 试确定 的所有取值,并求
    2. (2) 从样本质量指标值不小于85的产品中采用按比例分配的分层随机抽样的方法抽取7件产品,然后从这7件产品中一次性随机抽取2件产品,求至少有1件 级品的概率;
    3. (3) 求样本质量指标值 的平均数 (各分组区间的数据以该组区间的中点值代表).
  • 21. (2021高一下·漳州期末) 为进一步增强全市中小学学生和家长的防溺水安全意识,特在全市开展“防溺水安全教育”主题宣传活动.该市水利部门在水塘等危险水域设置警示标志,警示标志如下图所示.其中 均为正方形,且 .其中 为加强支撑管.

    1. (1) 若 时,求 到地面距离;
    2. (2) 若记 ,求支撑管 最长为多少?
  • 22. (2021高一下·漳州期末) 如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.

    (Ⅰ)证明:G是AB的中点;

    (Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

微信扫码预览、分享更方便

试卷信息