整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,然后增加2人与他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?设安排x人先做4h.小亮列的方程是: ,其中,“ ”表示的意思是“x人先做4h完成的工作量”,“ ”表示的意思是“增加2人后,(x+2)人再做8小时完成的工作量”.小宇列的方程是: ,其中,“ ”表示的意思是( )
解: ……………………………第一步
……………………………………第二步
……………………………………第三步
……………………………………………第四步
………………………………………………第五步
②以上步骤从第步开始出现了错误,错误的原因是;
②除纠正上述错误外,请你根据平时的学习经验,就解一元一次方程还需要注意的事项给其他同学提出一条建议.
计费项目 |
起程价 |
里程价 |
停车等待时长价 |
价格(单价) |
6元(2千米) |
1.4元/千米 |
0.3元/分 |
注:车费由起程价、里程价、停车等待时长价三部分构成.其中,起程价为6元,2千米以内(包括2千米)的车费为6元;里程价为:超过2千米后,每行驶1千米收费1.4元(不足1千米按1千米计算);停车等待时长价为:在等待红灯或堵车时,按车辆停止时间收费,每分钟0.3元(不足1分钟按1分钟计算).如,行驶里程为3千米,停车等待2分钟的计价方式为:6+1.4×(3-2)+0.3×2=8元. |
问题背景
数学活动课上,老师将一副三角尺按图1所示位置摆放,三角尺ABC中,∠BAC=90°,∠B=∠C=45°;三角尺ADE中,∠D=90°,∠DAE=60°,∠E=30°.分别作出∠BAD、∠CAE的平分线AM、AN.然后提出问题:求出∠MAN的度数.
特例探究
“智慧小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,AM和AN仍然是∠BAD和∠CAE的平分线. 其中,按图2方式摆放时,AB和AE在同一直线上.按图3方式摆放时, AB、AD、AM在同一直线上.
“智慧小组”的同学认为图2,图3中∠BAD、∠CAE的度数都已知或能求出具体的度数,图1中,∠MAN=∠MAB+∠BAE+∠EAN ,这些角比较一般化,求不出具体的度数,所以想到了用字母表示数,如果设∠BAE为x°,则可以用含x的式子表示∠BAD和∠CAE,进而可以表示∠MAB和∠EAN,这样就能求出∠MAN的度数;
请你根据智慧小组的思路,求出图1中∠MAN的度数.