当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省内江市2022届高三理数第一次模拟考试试卷

更新时间:2022-02-16 浏览次数:112 类型:高考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2022·内江模拟) 中,内角A、B、C的对边分别为a、b、c,满足
    1. (1) 求A的大小;
    2. (2) 若的面积为 , 求的周长.
  • 18. (2022·内江模拟) 某兴趣小组为了研究昼夜温差大小与患感冒人数多少之间的关系,请一所中学校医务室人员统计近期昼夜温差情况和到该校医务室就诊的患感冒学生人数,如下是2021年10月、11月中的5组数据:

    日期

    10月8日

    10月18日

    10月28日

    11月8日

    11月18日

    昼夜温差x(℃)

    8

    11

    6

    15

    5

    就诊人数y

    13

    17

    12

    19

    9

    1. (1) 通过分析,发现可用线性回归模型拟合就诊人数y与昼夜温差x之间的关系,请用以上5组数据求就诊人数关于昼夜温差的线性回归方程(结果精确到0.01);
    2. (2) 一位住校学生小明所患感冒为季节性流感,传染给同寝室每个同学的概率为0.6.若该寝室的另3位同学均未患感冒,在与小明近距离接触后有X位同学被传染季节性流感,求的分布列和期望.

      参考数据:

      参考公式:

  • 19. (2022·内江模拟) 在① , ② , ③这三个条件中任选一个,补充在下面问题中.

    问题:已知是等差数列,其前n项和为                  ▲                   , 是否存在正整数m,n, , 使得成立?若存在,求出正整数m,n满足的关系式;若不存在,请说明理由.

    注:若选择多个条件分别解答,则按第一个解答计分.

  • 20. (2022·内江模拟) 已知a, , 函数
    1. (1) 若函数在点处的切线与x轴平行,求a,b的值;
    2. (2) , 过点可以作曲线的三条切线,求实数a的取值范围.
  • 21. (2022·内江模拟) 已知函数
    1. (1) 设 , 讨论的单调性;
    2. (2) 若恒成立,求实数a的取值范围.
  • 22. (2022·内江模拟) 在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系.
    1. (1) 写出曲线C和直线l的极坐标方程;
    2. (2) 设直线l与曲线C交于A、B两点,点P的直角坐标为 , 若点P在直线l上,求的值.
  • 23. (2022·内江模拟) 已知函数
    1. (1) 求不等式的解集;
    2. (2) 记函数f(x)的最小值为m,若a,b,c均为正实数,且 , 求a2+b2+c2的最小值.

微信扫码预览、分享更方便

试卷信息