当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山西省晋中市灵石县2020-2021学年八年级下学期期中数学...

更新时间:2022-04-12 浏览次数:57 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 16. (2021八下·灵石期中) 下面是小华同学分解因式的过程,请认真阅读,并回答下列问题.

    解:原式

    1. (1) 任务一:以上解答过程从第步开始出现错误.
    2. (2) 任务二:请你写出正确的解答过程.
  • 17. (2021八下·灵石期中) 在直角坐标系中,将平移后得到 , 它们的三个顶点坐标如表所示:

    A(a,5)

    B(1,3)

    C(2,6)

    A1(3,3)

    B1(5,b)

    C1(c,d)

    1. (1) 观察表中各对应点坐标的变化填空:
    2. (2) 平移个单位长度,再向平移个单位长度可以得到
    3. (3) ①在坐标系中画出及平移后△A1B1C1

      ②以坐标原点O为旋转中心,将顺时针旋转90°,得到 , 请画出

  • 18. (2021八下·灵石期中) 如图,在 中, 边上的中线, 的垂直平分线分别交 于点 ,连接 .

    1. (1) 求证:点 的垂直平分线上;
    2. (2) 若 ,求 的度数.
  • 19. (2021八下·灵石期中)                
    1. (1) 探究发现:

      小明计算下面几个题目

      ;②;③;④

      后发现,形如的两个多项式相乘,计算结果具有一定的规律,请你帮助小明完善发现的规律:

    2. (2) 面积说明:

      上面规律是否正确呢?小明利用多项式乘法法则计算 , 发现这个规律是正确的.小明记得学习乘法公式时,除利用多项式乘法法则可以证明公式外,还可以利用图形面积说明乘法公式,于是画出右面图形说明他发现的规律,请你帮助小明补全图中括号的代数式.

    3. (3) 逆用规律:

      学过因式分解后,小明知道了因式分解与整式乘法是逆变形,他就逆用发现的规律对下面的多项式进行了因式分解,请你用小明发现的规律分解下面因式:.

  • 20. (2021八下·灵石期中) 如图,AD平分∠BAC,DE⊥AB,DF⊥AC,垂足分别为点E,F,DB=DC.

    1. (1) 求证:BE=CF;
    2. (2) 如果BD//AC,∠DAF=15°,求证:AB=2DF.
  • 21. (2021八下·灵石期中) 如图①是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=13,DM=5.

    1. (1) 在旋转过程中.

      ①当A,D,M三点在同一直线上时,求AM的长;

      ②当A,D,M三点为同一直角三角形的顶点时,求AM的长;

    2. (2) 若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连接D1D2 . 如图②,此时∠AD2C=135°,CD2=20,求BD2的长.
  • 22. (2021八下·灵石期中) 综合与实践

    【问题情境】

    在数学综合实践课上,老师让同学用两张全等的等腰三角形纸片进行拼摆,并探究摆放后所构成的图形之间的关系.如图1, , AB=AC,DE=DF.

    【操作发现】

    1. (1) 勤奋小组的同学把这两张纸片完全重合,点A与点D重合,将 绕点D逆时针方向旋转到如图2的位置,连接BE和CF.他们发现BE与CF之间存在着一定的数量关系,请写出这些关系并说明理由;
    2. (2) 创新小组的同学在勤奋小组的启发下,把 垂直翻转,再平移使得点E与点A重合,点D与点C重合,再将 沿射线CA的方向向上平移到图3的位置,连接BE和CF,他们发现了BE和CF之间的数量和位置关系,请写出这些关系并说明理由;
    3. (3) 请你参照以上操作,将图1中的 在同一平面内进行平移、旋转、翻转等图形变换,构成一种与图2和图3都不相同的图形,在图4中画出构造出的新图形,标明字母,说明构图方法,写出你发现的结论,不必证明.
  • 23. (2021八下·灵石期中) 如图, 是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,由B向CB延长线方向运动(Q不与B重合),已知点P、Q都以每秒 的速度同时开始运动,连接PQ交AB于D.

    1. (1) 运动几秒后, 为直角三角形?
    2. (2) 求证:在运动过程中,点D始终为线段PQ的中点;
    3. (3) 过P作PE⊥AB于E,在运动过程中线段ED的长是否发生变化?如果不变,直接写出线段ED的长;如果变化请说明理由.

微信扫码预览、分享更方便

试卷信息