当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

云南省昆明市西山区2022-2023学年七年级下学期期末数学...

更新时间:2023-10-17 浏览次数:84 类型:期末考试
一、选择题(本大题共12小题,共36.0分。在每小题列出的选项中,选出符合题目的一项)
二、填空题(本大题共4小题,共8.0分)
三、解答题(本大题共8小题,共56.0分。解答应写出文字说明,证明过程或演算步骤)
  • 18. (2023七下·西山期末) 在平面直角坐标系中,三点的坐标分别为

     

    1. (1) 画出 , 并将平移后,使点的对应点为点 , 点的对应点为点 , 点的对应点为点 , 画出平移后的 , 并直接写出点的坐标;
    2. (2) 求出的面积.
  • 19. (2023七下·西山期末) 年全国青少年定向教育竞赛在气候宜人的云南昆明开赛本次比赛历时天,设百米定向、专线定向、短距离赛和短距离接力赛个项目共有个学校和单位的名中小学生参赛某中学为了解学生对个项目:百米定向,:专线定向,:短距离赛,:短距离接力赛的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查每个被调查的学生必须选择而且只能在这个项目中选择一项将数据进行整理并绘制成下面两幅不完整的统计图.

    1. (1) 这次调查中,一共调查了    ▲        名学生,扇形统计图中“”所在扇形的圆心角的度数为 ,并补全条形统计图:
    2. (2) 若全校有名学生,请估计喜欢专线定向的学生有多少名?
  • 20. (2023七下·西山期末) 如图,

    1. (1) 求证:
    2. (2) 若的平分线, , 求的度数.
  • 21. (2024七下·民勤期中) 已知:的两个不同的平方根,的立方根的值.
  • 22. (2023七下·西山期末) 日,昆明市组织举办年“文化和自然遗产日”非遗宣传展示系列活动,在小渔村、福安村两个主会场开展了丰富多彩的非遗文化体验、展示活动年“文化和自然遗产日”非遗宣传展示活动的主题为“加强非遗系统性保护,促进可持续发展”昆明市围绕主题,采取市、县区联动的方式,通过在市级主会场和各县区分会场举行余项非遗宣传展示系列活动,让非遗“飞入寻常百姓家”,营造出昆明非遗保护传承的良好氛围,充分展示昆明市非物质文化遗产保护传承的新成果、新亮点为满足游客的需求,主办方从非遗传承人处购进安宁扎染和宝峰贴花用于现场售卖:第一批购进份安宁扎染和份宝峰贴花,支付元;第二批购进份安宁扎染和份宝峰贴花,支付元;
    1. (1) 求安宁扎染和宝峰贴花的进价.
    2. (2) 根据前期的市场调查,主办方将安宁扎染定价为份,宝峰贴花定价为份,全部销售完毕后,能获得多少利润?
  • 23. (2023七下·西山期末) 昆明城区日共出现以上高温天气天,为年以来昆明地区同期出现高温天气天数的第三多,其中日连续天最高气温 , 超过日最高气温为 , 创今年之最“炎炎夏日,酷暑难耐,寻一处清凉,得一份心静”西山区某家电超市决定采购甲、乙两种型号的电风扇进行销售,经市场调研得到信息如表所示:                                                                                                                  


    甲种型号电风扇

    乙种型号电风扇

    进价单位:元

             

             

    售价单位:元

             

             

    1. (1) 若超市准备用不超过元的资金采购这两种型号的电风扇共台,求甲种型号的电风扇最多能采购多少台?
    2. (2) 在条件下,若超市全部售完这台电风扇所获总利润不低于元,有哪几种进货方案?并通过计算说明哪种方案获得的总利润最大?最大利润是多少?
  • 24. (2023七下·西山期末) 【数学史料】

         孙子算经是中国古代重要的数学著作之一,相传为春秋时期著名军事家孙武所作,孙子算经中记载的“同余思想”为我们研究周期性变化规律提供了研究方法.

    【应用举例】

    例如: , 我们可以发现的指数幂个位数字是分别是这四个数字不断重复出现,因此我们把它称为周期性变化规律,其周期为是第个指数幂,用序号 , 商 , 于是第个指数幂个位数字与第一个指数幂相同;是第个指数幂,用序号 , 商 , 于是第个指数幂个位数字与第二个指数幂相同;是第个指数幂,用序号 , 商 , 于是第个指数幂个位数字与第三个指数幂相同;是第个指数幂,用序号 , 商 , 于是第个指数幂个位数字与第四个指数幂相同 , 按照这样方法第个指数幂的个位数字,就用 , 余数是 , 所以的个位数字与第三个指数幂相同,都是也就是说用序号分别除以周期,所得余数相同的指数幂其个位数字相同.

    【归纳小结】应对周期性变化规律,找准变化周期,用同余余数相同关系解决问题.

    【拓广探索】已知是不为的实数,我们把称为的差倒数,如:的差倒数是现已知的差倒数,的差倒数,的差倒数,以此类推,的差倒数为正整数

    1. (1) 已知当时的差倒数为周期性变化规律,则的值为 ;
    2. (2) 计算
    3. (3) 记 , 用含的式子表示的值.

微信扫码预览、分享更方便

试卷信息