一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。
-
-
-
-
-
-
6.
(2024高一下·江阳期末)
已知圆柱的上、下底面的中心分别为O
1 , O
2 , 过直线O
1O
2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )
-
7.
如图,在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
中,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EM%3C%2Fmi%3E%3C%2Fmath%3E)
为线段
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的中点,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EG%3C%2Fmi%3E%3C%2Fmath%3E)
为线段
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EM%3C%2Fmi%3E%3C%2Fmath%3E)
上一点,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmover%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EG%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%86%92%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmover%3E%3Cmrow%3E%3Cmi%3EG%3C%2Fmi%3E%3Cmi%3EM%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%86%92%3C%2Fmo%3E%3C%2Fmover%3E%3C%2Fmath%3E)
, 过点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EG%3C%2Fmi%3E%3C%2Fmath%3E)
的直线分别交直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EQ%3C%2Fmi%3E%3C%2Fmath%3E)
两点,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmover%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%86%92%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmover%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EP%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%86%92%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmover%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%86%92%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmover%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EQ%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%86%92%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
, 则
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
的最小值为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmo%3E%E2%80%85%3C%2Fmo%3E%3Cmo%3E%E2%80%85%3C%2Fmo%3E%3Cmo%3E%E2%80%85%3C%2Fmo%3E%3Cmo%3E%E2%80%85%3C%2Fmo%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
.
![](//tikupic.21cnjy.com/2024/07/02/f1/54/f154fca33881ad3e3ce68a37733a0b29.png)
-
8.
(2024高一下·江阳期末)
将函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ec%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3Eo%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3Es%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3E%CF%89%3C%2Fmi%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3E%CF%86%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3E%CF%89%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmi%3E%CF%86%3C%2Fmi%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
的图象向左平移
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
个单位长度得到如图所示的奇函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
的图象,且
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
的图象关于直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
对称
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E.%3C%2Fmo%3E%3C%2Fmath%3E)
则下列选项不正确的是( )
![](//tikupic.21cnjy.com/2024/07/02/c8/ec/c8ec54ff0de8b81c5069d45ba8aa0340.png)
二、多选题:本题共3小题,共18分。在每小题给出的选项中,有多项符合题目要求。
-
A . 若
, 则
B .
C . 若
, 则
D .
-
A .
, 有唯一解
B .
, 无解
C .
, 有两解
D .
, 有唯一解
-
A . 平面
平面
B . 若平面
平面
, 则一定有
C . 若平面
平面
, 则一定有
D . 点
是平面
上的动点,
, 则当直线
与
所成角最小时,点
到直线
的距离为
三、填空题:本题共3小题,每小题5分,共15分。
四、解答题:本题共5小题,共77分。解答应写出文字说明,证明过程或演算步骤。
-
-
-
-
(2)
若角β满足sin(α+β)=
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmfrac%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmrow%3E%3Cmn%3E13%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,求cos β的值.
-
-
(1)
求函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
的最小正周期及对称轴方程;
-
(2)
将函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
的图象向左平移
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E12%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
倍,得到函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
的图象,求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmn%3E0%2C2%3C%2Fmn%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3Cmo%3E%5D%3C%2Fmo%3E%3C%2Fmath%3E)
上的单调递减区间.
-
-
-
(1)
证明:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmo%3E%E2%8A%A5%3C%2Fmo%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
;
-
(2)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
, 直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
与直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
所成角的余弦值为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsqrt%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmsqrt%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
.
(ⅰ)求直线
与平面
所成角;
(ⅱ)求二面角
的余弦值.