①已知 , , 是非零的有理数,且时,则的值为1或;
②已知 , , 是有理数,且 , 时,则的值为或3;
③已知时,那么的最大值为7,最小值为;
④若且 , 则式子的值为;
⑤如果定义 , 当 , , 时,的值为 .
第1批 | 第2批 | 第3批 | 第4批 | 第5批 |
某商场在双十一期间为了鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?
【问题建模】
从1,2,3,…,n(n为整数,且)这n个整数中任取5个整数,这5个整数之和共有多少种不同的结果?
【模型探究】
我们采取一般问题特殊化的策略,先从最简单的情形入手,从中找出解决问题的方法.从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?
所取的2个整数 | 1,2 | 1,3 | 2,3 |
2个整数之和 | 3 | 4 | 5 |
如表所示:所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.
(1)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有 种不同的结果.
(2)从1,2,3,…,n(n为整数,且)这n个整数中任取3个整数,这3个整数之和共有 种不同的结果.
(3)归纳结论:从1,2,3,…,n(n为整数,且)这n个整数中任取5个整数,这5个整数之和共有 种不同的结果.
【问题解决】
从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有 种不同的优惠金额.
【问题拓展】
从3,4,5,…,n(n为整数,且)这n个整数中任取5个整数,使得取出的这些整数之和共有121种不同的结果,求n的值.(写出解答过程)
如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示 , 点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点P到达点C时,两点都停止运动.设运动的时间为t秒.问: