当前位置: 初中数学 / 综合题
  • 1. 如图

    1. (1) 探索:如图①,矩形ABCD中,点O是对角线BD的中点,过O作AB、AD边垂线,垂足分别为点E、F,将矩形AEOF绕点A顺时针旋转α(0°<α≤180°),连接BG、DM,求证:△BAG∽△DAM;
    2. (2) 发现:如图②,已知矩形ABCD中AB=6,AD=4,在矩形ABOF旋转过程中,连接DG、BM、GM,则四边形BDGM的面积是否存在最大值?若存在,求出最大值并说明理由;若不存在,请说明理由.
    3. (3) 应用:如图③,直线m∥直线n,且平行线间距离为3,直线n上有线段AB,始终保持AB=2,点C是直线m上动点,连接AC,以AC为边,在AC左侧作矩形ACDE,使得边CD与边AC的比为 ,连接DB,求DB的最小值.

微信扫码预览、分享更方便