当前位置: 初中数学 / 实践探究题
  • 1. (2019·二道模拟)     

    1. (1) 【问题背景】

      如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.

      小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.

    2. (2) 【探索延伸】

      如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD上的点,且∠EAF= ∠BAD,上述结论是否仍然成立,并说明理由.

    3. (3) 【学以致用】

      如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为.

微信扫码预览、分享更方便