当前位置: 初中数学 / 综合题
  • 1. (2019·二道模拟) 我们约定,在平面直角坐标系中两条抛物线有且只有一个交点时,我们称这两条抛物线为“共点抛物线”,这个交点为“共点”.

    1. (1) 判断抛物线y=x2与y=﹣x2是“共点抛物线”吗?如果是,直接写出“共点”坐标;如果不是,说明理由;
    2. (2) 抛物线y=x2﹣2x与y=x2﹣2mx﹣3是“共点抛物线”,且“共点”在x轴上,求抛物线y=x2﹣2mx﹣3的函数关系式;
    3. (3) 抛物线L1:y=﹣x2+2x+1的图象如图所示,L1与L2:y=﹣2x2+mx是“共点抛物线”;

      ①求m的值;

      ②点P是x轴负半轴上一点,设抛物线L1、L2的“共点”为Q,作点P关于点Q的对称点P′,以PP′为对角线作正方形PMP′N,当点M或点N落在抛物线L1上时,直接写出点P的坐标.

微信扫码预览、分享更方便