当前位置: 高中数学 / 单选题
  • 1. (2019·枣庄模拟) 波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆 =1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足 =2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为(   )

    A . B . C . D .

微信扫码预览、分享更方便