当前位置: 初中数学 / 综合题
  • 1. (2020·拉萨模拟) 如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与y轴交于点A(0,6),与x轴交于点B(﹣2,0),C(6,0).

    1. (1) 直接写出抛物线的解析式及其对称轴;
    2. (2) 如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P作PD⊥AC于点E,交x轴于点D,过点P作PG∥AB交AC于点F,交x轴于点G.设线段DG的长为d,求d与m的函数关系式,并注明m的取值范围;
    3. (3) 在(2)的条件下,若△PDG的面积为

      ①求点P的坐标;

      ②设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得△ARS为等腰直角三角形?若存在,请直接写出点M及其对应的点R的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便