当前位置: 初中数学 / 综合题
  • 1. (2015九下·南昌期中)

    在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.

    1. (1) 如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;

    2. (2) 将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).

      ①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;

      ②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;

      ③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF的数量关系.

微信扫码预览、分享更方便