当前位置: 初中数学 / 综合题
  • 1. (2020·丽水模拟) 在平面直角坐标系中,抛物线y=﹣ax2+2ax+c与x轴相交于A(﹣1,0)、B两点(A点在B点左侧),与y轴相交于点C(0,3 ),点D是抛物线的顶点.

    1. (1) 如图1,求抛物线的解析式;
    2. (2) 如图1,点F(0,b)在y轴上,连接AF,点Q是线段AF上的一个动点,P是第一象限抛物线上的一个动点,当b=﹣ 时,求四边形CQBP面积的最大值与点P的坐标;
    3. (3) 如图2,点C1与点C关于抛物线对称轴对称.将抛物线y沿直线AD平移,平移后的抛物线记为y1 , y1的顶点为D1 , 将抛物线y1沿x轴翻折,翻折后的抛物线记为y2 , y2的顶点为D2.在(2)的条件下,点P平移后的对应点为P1 , 在平移过程中,是否存在以P1D2为腰的等腰△C1P1D2 , 若存在请直接写出点D2的横坐标,若不存在请说明理由.

微信扫码预览、分享更方便