试题
试卷
试题
首页
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
当前位置:
初中数学
/
综合题
1.
(2020八上·金华月考)
如图1,已知直线l的同侧有两个点A,B,在直线l上找一点P,使P点到A,B两点的距离之和最短的问题,可以通过轴对称来确定,即作出其中一点关于直线l的对称点,对称点与另一点的连线与直线l的交点就是所要找的点,通过这种方法可以求解很多问题
(1) 如图2,在平面直角坐标系内,点A的坐标为(1,1),点B的坐标为(5,4),动点P在x轴上,求PA+PB的最小值;
(2) 如图3,在锐角三角形ABC中,AB=8,∠BAC=45°,∠BAC的角平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值为
(3) 如图4,∠AOB=30°,OC=4,OD=10,点E,F分别是射线OA,OB上的动点,则CF+EF+DE的最小值为
。
微信扫码预览、分享更方便
使用过本题的试卷
初中数学浙教版八年级上学期期末培优专题2 等腰三角形