已知矩形的面积为S(S为常数,S>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+ )(x>0)
探索研究
我们可以借鉴学习函数的经验,先探索函数y=x+ (x>0)的图象性质.
①列表:
x | … |
|
|
| 1 | 2 | 3 | 4 | … |
y | … |
| m |
| 2 |
|
|
| … |
表中m=;
②描点:如图所示;
③连线:请在图中画出该函数的图象;
④观察图象,写出两条函数的性质;
在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+ (x>0)的最小值.
y=x+ = + = + ﹣2 • +2 • = +2
∵ ≥0,∴y≥2
∴当 ﹣ =0,即x=1时,y最小值=2
请类比上面配方法,直接写出“问题情境”中的问题答案.