当前位置: 初中数学 / 阅读理解
  • 1. (2020八上·曲阜期末) 阅读下列材料:

    在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.

    下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.

    解:设x2﹣4xy

    原式=(y+1)(y+7)+9(第一步)

    y2+8y+16(第二步)

    =(y+4)2(第三步)

    =(x2﹣4x+4)2(第四步)

    请根据上述材料回答下列问题:

    1. (1) 小涵同学的解法中,第二步到第三步运用了因式分解的

      A . 提取公因式法        B . 平方差公式法        C . 完全平方公式法

    2. (2) 老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:
    3. (3) 请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.

微信扫码预览、分享更方便