当前位置: 高中数学 / 解答题
  • 1. (2020高三上·溧水期中) 是定义在 上且满足下列条件的函数 构成的集合:

    ①方程 有实数解;

    ②函数 的导数 满足

    1. (1) 试判断函数 是否集合 的元素,并说明理由;
    2. (2) 若集合 中的元素 具有下面的性质:对于任意的区间 ,都存在 ,使得等式 成立,证明:方程 有唯一实数解.
    3. (3) 设 是方程 的实数解,求证:对于函数 任意的 ,当 时,有

微信扫码预览、分享更方便