当前位置: 初中数学 / 综合题
  • 1. (2020九上·宜春期中) 已知抛物线 为正整数,且 )与 轴的交点为 ,当 时,第 条抛物线 轴的交点为 ,其他依此类推.

    1. (1) 求 的值及抛物线 的解析式.
    2. (2) 抛物线 的顶点 的坐标为();依此类推,第 条抛物线 的顶点 的坐标为();所有抛物线的顶点坐标 满足的函数关系式是
    3. (3) 探究以下结论:

      ①是否存在抛物线 ,使得 为等腰直角三角形?若存在,请求出抛物线 的解析式;若不存在,请说明理由.

      ②若直线 与抛物线 分别交于点 ,则线段 的长有何规律?请用含有 的代数式表示.

微信扫码预览、分享更方便