已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1),易证BD+AB= CB,过程如下:
过点C作CE⊥CB于点C,与MN交于点E ∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°, ∴∠BCD=∠ACE. ∵四边形ACDB内角和为360°, ∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°, ∴BD+AB= CB. | ∴∠EAC=∠BDC 又∵AC=DC, ∴△ACE≌△DCB, ∴AE=DB,CE=CB, ∴△ECB为等腰直角三角形, ∴BE= CB. 又∵BE=AE+AB, ∴BE=BD+AB. |