当前位置: 高中数学 / 填空题
  • 1. (2020高一上·泰州期末) “勾股容方”问题出自我国汉代数学名著《九章算术》,该问题可以被描述为:“设一直角三角形(如图1)的两直角边长分别为a和b,求与该直角三角形具有公共直角的内接正方形的边长”,公元263年,数学家刘徽为《九章算术》作注,在注中他利用出入相补原理给出了上述问题如图2和图3所示的解答,则图1中与直角三角形具有公共直角的内接正方形的边长为,当内接正方形的面积为1时,则图3中两个标有“朱”的三角形和两个标有“青”的三角形的面积总和的最小值为.

微信扫码预览、分享更方便