当前位置: 初中数学 / 综合题
  • 1. (2021九上·开福期末) 定义:若抛物线L:y=ax2+bx+c的图象恒过定点M(x0 , y0),则称M(x0 , y0)为抛物线L的“不动点”.已知:若抛物线L:y=ax2﹣2ax+x+1(a<0);

    1. (1) 求抛物线L的不动点坐标;
    2. (2) 已知平面直角坐标系中A(﹣1,0),B(1,0),C(3,0),以点B为圆心,OB为半径作⊙B,点P为⊙B上一点,将点C绕点P逆时针旋转90°得到点C',当点P为⊙B上运动时,求线段AC'长度的最大值;
    3. (3) 在(2)的条件下,若抛物线L的对称轴是直线x=2;

      ①求抛物线L的解析式;

      ②若直线PC交抛物线L于点E(x1 , y1)、F(x2 , y2),交y轴于点Q,平面内一点H坐标为H(4 ,2),记d=|x1﹣x2|,当点P在⊙B上运动时,求( 2的取值范围.

微信扫码预览、分享更方便